Modelling the surface roughness of steel after laser hardening by using 2D visibility network, convolutional neural networks and genetic programming
نویسندگان
چکیده
The surface characterization of materials after Robot Laser Hardening (RLH) is a technically demanding procedure. RLH commonly used to harden parts, especially when subject wear. By changing their properties, this treatment can offer several benefits such as lower costs for additional machining, no use cooling agents or chemicals, high flexibility, local hardening, minimal deformation, accuracy, and automated integrated process in the production process. However, roughness strongly depends on heat parameters This article network theory approach (i.e., visibility 2D space) analyze tool steel EN100083-1 upon RLH. Specifically, two intelligent methods were merged investigation. Firstly, genetic algorithm was applied derive relationship between robot laser cell topological properties. Furthermore, convolutional neural networks allowed assessment based photographic images.
منابع مشابه
automatic verification of authentication protocols using genetic programming
implicit and unobserved errors and vulnerabilities issues usually arise in cryptographic protocols and especially in authentication protocols. this may enable an attacker to make serious damages to the desired system, such as having the access to or changing secret documents, interfering in bank transactions, having access to users’ accounts, or may be having the control all over the syste...
15 صفحه اولscour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network
today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...
Prediction of Surface Roughness by Hybrid Artificial Neural Network and Evolutionary Algorithms in End Milling
Machining processes such as end milling are the main steps of production which have major effect on the quality and cost of products. Surface roughness is one of the considerable factors that production managers tend to implement in their decisions. In this study, an artificial neural network is proposed to minimize the surface roughness by tuning the conditions of machining process such as cut...
متن کاملcontrol of the optical properties of nanoparticles by laser fields
در این پایان نامه، درهمتنیدگی بین یک سیستم نقطه کوانتومی دوگانه(مولکول نقطه کوانتومی) و میدان مورد مطالعه قرار گرفته است. از آنتروپی ون نیومن به عنوان ابزاری برای بررسی درهمتنیدگی بین اتم و میدان استفاده شده و تاثیر پارامترهای مختلف، نظیر تونل زنی(که توسط تغییر ولتاژ ایجاد می شود)، شدت میدان و نسبت دو گسیل خودبخودی بر رفتار درجه درهمتنیدگی سیستم بررسی شده اشت.با تغییر هر یک از این پارامترها، در...
15 صفحه اولOn the use of back propagation and radial basis function neural networks in surface roughness prediction
Various artificial neural networks types are examined and compared for the prediction of surface roughness in manufacturing technology. The aim of the study is to evaluate different kinds of neural networks and observe their performance and applicability on the same problem. More specifically, feed-forward artificial neural networks are trained with three different back propagation algorithms, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: FME Transactions
سال: 2022
ISSN: ['1451-2092', '2406-128X']
DOI: https://doi.org/10.5937/fme2203393b